4.6 Article Proceedings Paper

Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 43, Issue 13, Pages 4518-4526

Publisher

SPRINGER
DOI: 10.1007/s10853-008-2647-5

Keywords

-

Ask authors/readers for more resources

Al-based metal matrix composites were synthesized through powder metallurgy methods by hot extrusion of elemental Al powder blended with different amounts of metallic glass reinforcements. The glass reinforcement was produced by controlled milling of melt-spun Al(85)Y(8)Ni(5)Co(2) glassy ribbons. The composite powders were consolidated into highly dense bulk specimens at temperatures within the supercooled liquid region. The mechanical properties of pure Al are improved by the addition of the glass reinforcements. The maximum stress increases from 155 MPa for pure Al to 255 and 295 MPa for the samples with 30 and 50 vol.% of glassy phase, respectively. The composites display appreciable ductility with a strain at maximum stress ranging between 7% and 10%. The mechanical properties of the glass-reinforced composites can be modeled by using the iso-stress Reuss model, which allows the prediction of the mechanical properties of a composite from the volume-weighted averages of the components properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available