4.5 Article

Hidden energy dissipation mechanism in nacre

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 29, Issue 14, Pages 1573-1578

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2014.179

Keywords

-

Funding

  1. U.S. Army research office [W911 NF-07-1-0449, W911NF-07-1-0335]

Ask authors/readers for more resources

The defense mechanism that nacre (mother-of-pearl) uses to protect its living organism against high-speed predatory attack can provide lessons for engineered armor design. However, the underlying physics responsible for nacre's dynamic energy dissipation has hitherto remained a mystery to be uncovered. Here we demonstrate a new energy dissipation mechanism hidden in nacre and activated only upon dynamic loading, where the crack terminates its propagation along nacre's biopolymer interlayers but straightly impinges the aragonite platelets (95 vol%) in a transgranular manner. This intergranular-transgranular transition promotes the fracture energy dissipation, far exceeding that of the currently-used engineered ceramics. The mechanistic origin accounting for the enhancement of fracture energy dissipation is attributed to the unique nanoparticle architectured aragonite platelets. The dynamic manifestation in nacre can inspire a new route to design stronger-and-tougher engineered ceramic armors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available