4.5 Article

Compression behavior of magnesium/carbon nanotube composites

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 28, Issue 14, Pages 1877-1884

Publisher

SPRINGER HEIDELBERG
DOI: 10.1557/jmr.2013.167

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002144]

Ask authors/readers for more resources

Carbon nanotube (CNT)-reinforced magnesium (Mg) matrix composites were synthesized using a powder metallurgical method and tested compressively along the plane normal and in-plane orientations. Yield strengths of composites were significantly increased by 35-129% compared with that of pure Mg. With the increase of CNT weight percentage, yield strength first increased until reaching a critical CNT weight percentage and then decreased. Twinning operated in the in-plane samples when CNT weight percentage was less than or equal to 0.5%, whereas twinning operation was not observed in all plane normal samples and the in-plane samples with 1% or higher CNT weight percentage. Severe plastic deformation was exhibited in fracture surface images with low magnification, whereas intrinsic brittle fracture feature was observed under high magnification. A theoretical model incorporating the Orowan strengthening and the thermal expansion mismatch strengthening was utilized and made good yield strength predictions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available