4.5 Article

Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 24, Issue 12, Pages 3620-3627

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/JMR.2009.0442

Keywords

-

Ask authors/readers for more resources

The morphology of the fracture surfaces of a bulk metallic glass (BMG) tested under compression was systematically studied. Experimental results showed that the fracture surface always comprises two kinds of zones, starting with a relatively smooth zone followed by the second zone with vein patterns. It implies strongly that the plastic deformation of BMGs always starts with a cooperative shear. The following catastrophic fracture characterized by the vein patterns may or may not occur, depending on the magnitude of this shear, which is controlled by the sample size and machine stiffness. This phenomenon was interpreted based on the temperature rise resulting from the work done during the cooperative shear. It revealed that for small samples, the shear is so small that the temperature rise is insignificant, accounting for the extensive serrated flow, while the temperature rise in samples beyond a critical size is sufficiently high so that the temperatures in the shear band are higher than the glass transition temperature or even the melting temperature, leading to catastrophic fracture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available