4.6 Article

Modelling and simulation of micro-milling cutting forces

Journal

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
Volume 210, Issue 15, Pages 2154-2162

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2010.07.033

Keywords

Finite element analysis; Micro-milling; Chip formation; Cutting forces

Funding

  1. Nottingham Innovative Manufacturing Research Centre (NIMRC)
  2. Engineering and Physical Sciences Research Council (EPSRC)

Ask authors/readers for more resources

The paper presents a new approach for predicting micro-milling cutting forces using the finite element method (FEM). The trajectory of the tool and the uncut chip thickness for different micro-milling parameters (cutting tool radius, feed rate, spindle angular velocity and number of flutes) are determined and used for predicting the cutting forces in micro-milling. The run-out effect is also taken into account. An orthogonal FE model is developed. A number of FE analyses (FEA) are performed at different uncut chip thicknesses (0-20 mu m) and velocities (104.7-4723 mm/s) for AISI 4340 steel. Based on the FE results, the relationship between the cutting forces, uncut chip thickness and cutting velocity has been described by a non-linear equation proposed by the authors. The suggested equation describes the ploughing and shearing dominant cutting forces. The micro-milling cutting forces have been determined by using the predicted forces from the orthogonal cutting FE model and the calculated uncut chip thickness. Different feed rates and spindle angular velocities have been investigated and compared with experimentally obtained results. The predicted and the measured forces are in very good agreement. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available