4.5 Article

MU Analysis of the causes of heavy aerosol pollution in Beijing, China: A case study with the WRF-Chem model

Journal

PARTICUOLOGY
Volume 20, Issue -, Pages 32-40

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.partic.2014.06.004

Keywords

PM2.5 in Beijing; Causes of heavy haze; Planetary boundary layer (PBL); WRF-Chem model

Funding

  1. National Science Foundation of China (NSFC) [41205100, 41275186, 41175007]
  2. National Department Public Benefit Research Foundation of China [GYHY201306065]
  3. National Science Foundation, U.S.

Ask authors/readers for more resources

The causes and variability of a heavy haze episode in the Beijing region was analyzed. During the episode, the PM2.5 concentration reached a peak value of 450 mu g/kg on January 18, 2013 and rapidly decreased to 100 mu g/kg on January 19, 2013, characterizing a large variability in a very short period. This strong variability provides a good opportunity to study the causes of the haze formation. The in situ measurements (including surface meteorological data and vertical structures of the winds, temperature, humidity, and planetary boundary layer (PBL)) together with a chemical/dynamical regional model (WRF-Chem) were used for the analysis. In order to understand the rapid variability of the PM2.5 concentration in the episode, the correlation between the measured meteorological data (including wind speed, PBL height, relative humidity, etc.) and the measured particle concentration (PM2.5 concentration) was studied. In addition, two sensitive model experiments were performed to study the effect of individual contribution from local emissions and regional surrounding emissions to the heavy haze formation. The results suggest that there were two major meteorological factors in controlling the variability of the PM2.5 concentration, namely, surface wind speed and PBL height. During high wind periods, the horizontal transport of aerosol particles played an important role, and the heavy haze was formed when the wind speeds were very weak (less than 1 m/s). Under weak wind conditions, the horizontal transport of aerosol particles was also weak, and the vertical mixing of aerosol particles played an important role. As a result, the PBL height was a major factor in controlling the variability of the PM2.5 concentration. Under the shallow PBL height, aerosol particles were strongly confined near the surface, producing a high surface PM2.5 concentration. The sensitivity model study suggests that the local emissions (emissions from the Beijing region only) were the major cause for the heavy haze events. With only local emissions, the calculated peak value of the PM2.5 concentration was 350 mu g/kg, which accounted for 78% of the measured peak value (450 mu g/kg). In contrast, without the local emissions, the calculated peak value of the PM2.5 concentration was only 100 mu g/kg, which accounted for 22% of the measured peak value. (c) 2014 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available