4.5 Article

A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 21, Issue 9, Pages 1885-1892

Publisher

SPRINGER
DOI: 10.1007/s11665-011-0108-9

Keywords

ECAP; extrusion; metal matrix composite; powder metallurgy

Ask authors/readers for more resources

In this study, two powder consolidation techniques, equal channel angular pressing (ECAP) and extrusion, were utilized to consolidate attritioned aluminum powder and Al-5 vol.% nano-Al2O3 composite powder. The effect of ECAP and extrusion on consolidation behavior of composite powder and mechanical properties of subsequent compacts are presented. It is found that three passes of ECAP in tube at 200 A degrees C is capable of consolidating the composite to 99.29% of its theoretical density whereas after hot extrusion of the composite the density reached to 98.5% of its theoretical density. Moreover, extrusion needs higher temperature and pressing load in comparison to the ECAP method. Hardness measurements show 1.7 and 1.2 times higher microhardness for the consolidated composite and pure aluminum after ECAP comparing with the extruded ones, respectively. Microstructural investigations and compression tests demonstrate stronger bonds between the particles after three passes of ECAP than the extrusion. Furthermore, the samples after three passes of ECAP show better wear resistance than the extruded ones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available