4.5 Article Proceedings Paper

Mechanical Properties of Highly Porous NiTi Alloys

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 20, Issue 4-5, Pages 522-528

Publisher

SPRINGER
DOI: 10.1007/s11665-011-9854-y

Keywords

fatigue; mechanical properties; metal injection molding; porous NiTi; powder metallurgy; space-holder technique

Ask authors/readers for more resources

Highly porous NiTi alloys with pseudoelastic properties are attractive candidates for biomedical implants, energy absorbers, or damping elements. Recently, a new method was developed for net-shape manufacturing of such alloys combining metal injection molding with the application of suitable space-holder materials. A comprehensive study of mechanical properties was conducted on samples with a porosity of 51% and a pore size in the range of 300-500 mu m. At low deformations < 6%, fully pronounced pseudoelasticity was found. Even at higher strains, a shape recovery of maximum 6% took place, on which the onset of irreversible plastic deformation was superposed. Results of static compression tests were also used to calculate the energy-absorbing capacity. Fatigue of porous NiTi was investigated by cyclic loading up to 230,000 stress reversals. The failure mechanisms responsible for a reduction of shape recovery after an increased number of load cycles are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available