4.3 Article

Structure-directed growth of high conductivity PEDOT from liquid-like oxidant layers during vacuum vapor phase polymerization

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 30, Pages 14889-14895

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm32281a

Keywords

-

Funding

  1. ITEK Pty Ltd
  2. commercialization company of the University of South Australia

Ask authors/readers for more resources

Vapor phase polymerization (VPP) is at the forefront for synthesizing high conductivity poly(3,4-ethylenedioxythiophene) (PEDOT) as an alternative to indium tin oxide (ITO). Little attention, however, has been directed to the oxidant layer used in the polymerization process. In this study the observation of an oxidant layer (oxidant + PEG-PPG-PEG) possessing liquid-like properties during the vacuum synthesis of PEDOT is reported. This is in contrast to the other oxidant layer variants studied which are observed as solid (pristine oxidant) or gel-like (oxidant + pyridine). Tailoring of the liquid-like properties leads to confluent PEDOT films with a conductivity of 2500 S cm(-1), placing this PEDOT within the conductivity range of commercially available ITO. Building on the liquid-like observation, XPS and ToF-SIMS experiments reveal that PEDOT growth is via a bottom-up mechanism with transportation of new oxidant up to the forming PEDOT layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available