4.3 Article

Morphology-dependent supramolecular photocatalytic performance of porphyrin nanoassemblies: from molecule to artificial supramolecular nanoantenna

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 38, Pages 20243-20249

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm33253a

Keywords

-

Funding

  1. National Natural Science Foundation of China [20873159, 21021003, 91027042]
  2. Ministry of Science and Technology of China [2011CB932301]
  3. Chinese Academy of Sciences

Ask authors/readers for more resources

In this paper, we have studied the supramolecular photocatalytic performance of porphyrin-based nanofibers and nanospheres in terms of photodegradation of rhodamine B (RhB) pollutant under visible light irradiation, wherein interesting morphology-dependent photocatalytic activity has been achieved. We have demonstrated that nanofibers, which are synthesized by means of surfactant-assisted self-assembly of zinc 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (ZnTPyP), display distinct photocatalytic activity for the photodegradation of RhB molecules, where the bleaching reaction could be repeatedly operated 8 times. When the spherical nanostructures are employed, however, only negligible photocatalytic activity could be observed. The electron paramagnetic resonance investigations have revealed that singlet oxygen species are generated when spherical ZnTPyP nanostructures are employed, whereas hydroxyl radical species are produced in the nanofiber system. An electron transfer process is suggested to be responsible for the photocatalytic performance of the fibrous nanoassemblies. It is revealed that the monomeric state of ZnTPyP in the spherical nanostructures disfavors the electron transfer process, resulting in negligible photocatalytic activity. On the contrary, the formation of J-aggregates in the nanofibers facilitates the electron transfer process, resulting in distinct photocatalytic performance. The investigation suggests that an artificial supramolecular nanoantenna system based on nanostructured porphyrin assemblies could be achieved by tuning the molecular arrangement of the nanoassemblies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available