4.3 Article

Hydrophilic poly(triphenylamines) with phosphonate groups on the side chains: synthesis and photovoltaic applications

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 10, Pages 4329-4336

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm14970a

Keywords

-

Funding

  1. National Natural Science Foundation of China [51173048, 50990065, 51010003]
  2. Ministry of Science and Technology of China [2009CB623600]
  3. SCUT [2009ZZ0003]

Ask authors/readers for more resources

Two triphenylamine-based homopolymers PTPA-EP and PTPA-PO3Na2, comprising diethyl phosphonate and sodium phosphonate end groups on side chains, respectively, were synthesized. The UV-vis absorption and photoluminescence (PL) properties of the PTPA-EP and PTPA-PO3Na2 are mainly determined by the conjugated poly(triphenylamine) main chain. The PTPA-EP and PTPA-PO3Na2 possess comparable HOMO levels of around -5.03 eV. The PTPA-EP, with better solubility than PTPA-PO3Na2 in hydrophilic solvents, was utilized as cathode interlayer to construct efficient bulk-heterojunction photovoltaic cells with a low bandgap poly(2,7-carbazole) (PCDTBT) as the polymer donor and [6,6]-phenyl C-71-butyric acid methyl ester (PC71BM) as the acceptor. The work function of ITO was shifted to 4.3 eV by PTPA-EP, which matches well with the LUMO level of PC71BM for good electron extraction. Inverted solar cells with a device configuration of ITO/PTPA-EP/active layer/MoO3/Al exhibited a power conversion efficiency (PCE) of 4.59%, which is a good efficiency among inverted solar cells with an organic interlayer on an ITO cathode. The PCE shows a 79% increase in comparison to that of a bare ITO cathode, though the efficiency is lower than 5.13% for an inverted solar cell with an inorganic ZnO interlayer on ITO. Moreover, a conventional solar cell with a device configuration of ITO/PEDOT:PSS/active layer/PTPA-EP/Al could show a better PCE of 5.27%. The results indicate that PTPA-EP is a promising new cathode interlayer for high efficiency inverted and conventional solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available