4.3 Article

Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 11, Pages 5065-5071

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm14787d

Keywords

-

Funding

  1. AIST
  2. JST

Ask authors/readers for more resources

Core-shell structured Au-Co@SiO2 nanospheres have been synthesized using a reverse-micelle method. During heat treatment in vacuum, multiple Au-Co nanoparticles (NPs) embedded in SiO2 nanospheres (Au-Co@SiO2-RT) merged into single Au-Co NPs in SiO2 (Au-Co@SiO2-HT), resulting in a size increase of the Au-Co NPs. The Au-Co@SiO2-HT nanospheres showed better catalytic activity than that of Au-Co@SiO2-RT. The higher catalytic activity of Au-Co@SiO2-HT could be attributed to the decrease in the content of basic ammine by the decomposition of metal ammine complexes during the heat treatment. Compared with their monometallic counterparts, the bimetallic Au-Co NPs embedded in a SiO2 nanosphere show higher catalytic activity for the hydrolytic dehydrogenation of NH3BH3 to generate a stoichiometric amount of hydrogen at room temperature for chemical hydrogen storage. The synergistic effect between Au and Co inside the silica nanospheres plays an important role in the catalytic hydrolysis of NH3BH3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available