4.3 Article

Influence of confinement regimes on magnetic property of pristine SnO2 quantum dots

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 47, Pages 24545-24551

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm35274e

Keywords

-

Funding

  1. Nanomission of DST, Govt. of India
  2. CSIR, India

Ask authors/readers for more resources

We demonstrate a clear correlation between the quantum confinement effect and magnetization of pristine tin dioxide (SnO2) quantum dots (QDs). We have synthesized single crystalline QDs of SnO2 above and below the exciton Bohr radius (2.7 nm). Such fine control over the size of the QDs is a challenging task. The 2 nm QDs belong to strong confinement regimes and are found to be ferromagnetic in nature, whereas 3 nm QDs are diamagnetic like bulk SnO2. To the best of our knowledge, so far no experimental studies on the influence of confinement effect on the magnetic behaviour of SnO2 QDs have been reported. We propose two possible mechanisms based on the theory of localization of holes due to a strong confinement effect to explain room temperature ferromagnetism in 2 nm QDs. The localization of holes is confirmed from photoluminescence and UV visible spectroscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available