4.3 Article

Biocompatible, pH-sensitive AB(2) miktoarm polymer-based polymersomes: preparation, characterization, and acidic pH-activated nanostructural transformation

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 36, Pages 19168-19178

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm33750a

Keywords

-

Funding

  1. NIH [CA101850]

Ask authors/readers for more resources

Motivated by the limitations of liposomal drug delivery systems, we designed a novel histidine-based AB(2)-miktoarm polymer (mPEG-b-(polyHis)(2)) equipped with a phospholipid-mimic structure, low cytotoxicity, and pH-sensitivity. Using core-first click chemistry and ring-opening polymerization, mPEG(2kDa)-b-(polyHis(29kDa))(2) was successfully synthesized with a narrow molecular weight distribution (1.14). In borate buffer (pH 9), the miktoarm polymer self-assembled to form a nano-sized polymersome with a hydrodynamic radius of 70.2 nm and a very narrow size polydispersity (0.05). At 4.2 mu mol per mg polymer, mPEG(2kDa)-b-(polyHis(29kDa))(2) strongly buffered against acidification in the endolysosomal pH range and exhibited low cytotoxicity on 5 days exposure. Below pH 7.4 the polymersome transitioned to cylindrical micelles, spherical micelles, and finally unimers as the pH was decreased. The pH-induced structural transition of mPEG(2kDa)-b-(polyHis(29kDa))(2) nanostructures may be caused by the increasing hydrophilic weight fraction of mPEG(2kDa)-b-(polyHis(29kDa))(2) and can help to disrupt the endosomal membrane through proton buffering and membrane fusion of mPEG(2kDa)-b-(polyHis(29kDa))(2). In addition, a hydrophilic model dye 5(6)-carboxyfluorescein encapsulated into the aqueous lumen of the polymersome showed a slow, sustained release at pH 7.4 but greatly accelerated release below pH 6.8, indicating a desirable pH sensitivity of the system in the range of endosomal pH. Therefore, this polymersome that is based on a biocompatible histidine-based miktoarm polymer and undergoes acid-induced transformations could serve as a drug delivery vehicle for chemical and biological drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available