4.3 Article

Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 2, Pages 725-730

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm13880d

Keywords

-

Ask authors/readers for more resources

Bismuth telluride (Bi2Te3) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications at ambient temperature. However, its dimensionless figure-of-merit-ZT around 1 limits the large-scale industrial applications. Recent studies indicate that nanostructuring can enhance ZT while keeping the material form of bulk by employing an advanced synthetic process accompanied with novel consolidation techniques. Here, we report on bulk nanostructured (NS) undoped Bi2Te3 prepared via a promising chemical synthetic route. Spark plasma sintering has been employed for compaction and sintering of Bi2Te3 nanopowders, resulting in very high densification (>97%) while preserving the nanostructure. The average grain size of the final compacts was obtained as 90 +/- 5 nm as calculated from electron micrographs. Evaluation of transport properties showed enhanced Seebeck coefficient (-120 mu V K-1) and electrical conductivity compared to the literature state-of-the-art (30% enhanced power factor), especially in the low temperature range. An improved ZT for NS bulk undoped Bi2Te3 is achieved with a peak value of similar to 1.1 at 340 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available