4.3 Article

In situ formation of chiral core-shell nanostructures with raspberry-like gold cores and dense organic shells using catechin and their catalytic application

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 22, Issue 35, Pages 18335-18344

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm32303f

Keywords

-

Funding

  1. DST, New Delhi, India, under the Nanoscience and Nanotechnology Initiative
  2. CSIR, Government of India

Ask authors/readers for more resources

Chiral core-shell nanostructures containing raspberry-like gold cores and well-defined dense organic shells are synthesized by an in situ method using a natural antioxidant catechin as the reducing agent. This method is flexible and enables control over the shell thickness by adjusting the molar ratio of catechin to HAuCl4. Transmission electron microscopic analysis shows the formation of core-shell nanostructures with somewhat raspberry-shaped gold cores. The proposed mechanism explains that catechin reduces Au3+ to metallic Au to gold nanostructures and gets oxidized to different oligomeric products that are adsorbed in situ and assembled through II-bonding and form a thick organic shell around the generated gold nanostructures. Each of these oxidized forms of catechin is well-characterized by FTIR, ESI-MS, and MALDI-TOF-MS spectroscopies. This reaction follows a radical pathway as confirmed by electron paramagnetic resonance spectroscopy. Due to the presence of a compact and dense shell, the rate of gold core dissolution sharply decreases compared to that of the dissolution of monolayer protected Au nanoparticles when etched with KCN solution. The optical activity of the core-shell nanostructure is the result of the interaction between chiral shells and gold cores as observed by circular dichroism (CD) spectroscopy. The chiral core-shell Au nanostructures exhibit a CD band at the plasmon resonance frequency (similar to 596 nm). Finally, these chiral core-shell nanostructures are used as an effective catalyst in the borohydride reduction of p-nitrophenol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available