4.3 Article

Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 16, Pages 5897-5906

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm04574h

Keywords

-

Funding

  1. National Science Foundation of China [50677037]
  2. National Undergraduate Innovative Test Program (ITP) [PP2067]
  3. Science and Technology Commission of Shanghai Municipality [08DZ2201100, 08DZ2272700]

Ask authors/readers for more resources

Core-shell structured BaTiO3/poly(methyl methacrylate) (PMMA) nanocomposites were successfully prepared by in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from the surface of BaTiO3 nanoparticles. A broadband dielectric spectrometer was used to investigate the temperature dependence of the dielectric properties of the nanocomposites in a frequency range from 0.1 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased dielectric constant when compared with pure PMMA, but also showed the inherent low loss of the base polymer in a wide range of frequencies. Only in the very low frequency/high temperature range, can a higher dielectric loss can be observed in the nanocomposites. It was also found that the effective dielectric constant of the core-shell structured hybrid nanoparticles can be tailored by varying the polymer shell thickness. The dielectric response of beta relaxation of PMMA was also studied and the results showed that the nanoparticles had no influence upon the relaxation activation energy. Fourier-transform infrared spectroscopy (FTIR) and H-1 NMR spectra confirmed the chemical structure of the PMMA shell on the surface of the BaTiO3 nanoparticles. Transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) results revealed that the PMMA shell thickness could be well controlled by tuning the feed ratio of MMA to BaTiO3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available