4.3 Article

Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 9, Pages 3046-3052

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm03132a

Keywords

-

Funding

  1. Australian Research Council (ARC) [DP0772999, LP0989134]
  2. National Foundation of Korea (NRF) through the WCU (World Class University) [R32-2008-000-20093-0]

Ask authors/readers for more resources

In this work, we have synthesized highly ordered mesoporous NiO materials by a nanocasting method using mesoporous silica KIT-6 as the hard templates. Mesoporous NiO particles were characterized by small angle X-ray diffraction (XRD), nitrogen adsorption/desorption, and transmission electron microscopy (TEM). The results demonstrated that the as-prepared mesoporous NiO had an ordered Ia3d symmetric mesostructure, with a high surface area of 96 m(2)/g. Mesoporous NiO materials were tested as an anode material for lithium ion batteries, exhibiting much lower activation energy (20.75 kJ mol(-1)) compared to the bulk NiO (45.02 kJ mol(-1)). We found that the mesoporous NiO electrode has higher lithium intercalation kinetics than its bulk counterpart. The specific capacity of mesoporous NiO after 50 cycles was maintained 680 mAh/g at 0.1 C, which was much higher than that of the commercial bulk NiO (188 mAh/g). Furthermore, at a high rate of 2C, the discharge capacity of mesoporous NiO was as high as 515 mAh/g, demonstrating the potential to be used for high power lithium ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available