4.3 Article

Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 30, Pages 11224-11231

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm11561h

Keywords

-

Funding

  1. Office of Naval Research
  2. National Science Foundation
  3. Purdue Research Foundation

Ask authors/readers for more resources

We describe two hybrid nanomaterial biosensor platforms, based on networks of single-walled carbon nanotubes (SWCNTs) enhanced with Pd nanocubes and Pt nanospheres and grown in situ from a porous anodic alumina (PAA) template. These nanocube and nanosphere SWCNT networks are converted into glutamate biosensors by immobilizing the enzyme glutamate oxidase (cross-linked with gluteraldehyde) onto the electrode surface. The Pt nanosphere/SWCNT biosensor outperformed the Pd nanocube/SWCNT biosensor and previously reported similar nanomaterial-based biosensors by amperometrically monitoring glutamate concentrations with a wide linear sensing range (50 nM to 1.6 mM) and a small detection limit (4.6 nM, 3 sigma). These results combined with the biosensor fabrication scheme (in situ growth of SWCNTs, electrodeposition of metal nanoparticles, and facile enzyme immobilization protocol) create a biosensor that can potentially be scaled for integration into a wide range of applications including the treatment of neurological disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available