4.3 Article

Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 3, Pages 829-836

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm02546a

Keywords

-

Funding

  1. NSERC

Ask authors/readers for more resources

Metal nanowire/polymer nanocomposites are advanced materials for electrically conductive applications. Metal nanowires have high surface area, high aspect ratios, and high electrical conductivity, which are critical for the synthesis of conductive polymer nanocomposites using extremely low amounts of conductive filler. In this work, lightweight, thin, and highly conductive copper nanowire/polystyrene nanocomposites were prepared using a novel method of nanocomposite preparation termed miscible solvent mixing and precipitation (MSMP). Suspensions of high aspect ratio copper nanowires were mixed with polystyrene solutions to produce polymer nanocomposites with segregated nanowire networks resembling cell-like structures. Highly electrically conductive networks of nanowires were obtained beyond a percolation threshold of phi(c) = 0.67 vol% and percolated nanocomposites showed electrical conductivities up to 10(4) S m(-1), which exceeds the conductivity range generally reported for carbon nanofiller-based nanocomposites. The significant potential of these nanocomposites for electrical applications like electromagnetic interference (EMI) shielding was further demonstrated. Metal nanowire/polymer nanocomposites sheets of 0.21 mm in thickness exhibited EMI SE of more than 20 dB for copper nanowire concentrations of only 1.3 vol%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available