4.3 Article

Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 36, Pages 13991-13998

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm12134k

Keywords

-

Funding

  1. Finnish Funding Agency for Technology and Innovation (TEKES)

Ask authors/readers for more resources

Graphene/cellulose nanocomposite paper with high mechanical and electrical performances was reported in this study by combining reduced graphene oxide sheets (RGO) and amine-modified nanofibrillated cellulose (A-NFC) in a well-controlled manner. By adjusting the GO content, various graphene/cellulose nanocomposites with 0.1-10 wt% content of graphene were obtained. The RGO/A-NFC nanocomposite synthesized by the developed method exhibits an electrical percolation threshold of 0.3 wt% with an electrical conductivity of 4.79 x 10(-4) S m(-1), which is well above the antistatic value. Furthermore, with 10 wt% of graphene, a high conductivity of 71.8 S m(-1) was measured for the nanocomposite. Moreover, it was found that on addition of only 0.3 wt% of graphene, the tensile strength increased by 1.2 fold and 2.3 folds compared to that of the neat cellulose and graphene oxide paper, respectively, revealing an excellent reinforcement of graphene sheets. Moreover, the elongation at break of the composite with graphene content was 8.5%, which is similar to that of A-NFC paper and much higher than that of GO paper. It is noteworthy to mention that with 5 wt% of graphene, the RGO/A-NFC composite paper showed a significantly enhanced tensile strength of 273 MPa that is 1.4 fold and 2.8 folds higher than that of the cellulose papers and graphene oxide paper, respectively. Such a high enhancement of electrical and mechanical properties in cellulose paper by graphene has never been reported before for any carbon-based material/cellulose composite paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available