4.3 Article

Oxygen reduction reaction catalyst on lithium/air battery discharge performance

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 27, Pages 10118-10125

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm04170j

Keywords

-

Ask authors/readers for more resources

Lithium/air batteries have the potential to substantially outperform the best battery system nowadays on the market. Oxygen reduction reaction (ORR) at the cathode in an aprotic organic lithium electrolyte is well-known to limit the discharge rate and capacity of the lithium/air batteries. In this study, the discharge characteristics of Li/air cells with cathodes made of different carbon materials were examined. The results showed that the ORR kinetics in the lithium/air batteries can be drastically improved by using an effective catalyst, achieving higher discharge voltage and rate. The discharge capacity of the lithium/air battery was found to be correlated to the cathode pore volume, to which the mesopore volume of the carbon material has a large contribution. An ORR mechanistic model involving a reaction product deactivating the catalytic sites on the carbon surface is proposed to explain the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available