4.3 Article

Aqueous room-temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 31, Pages 11599-11604

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm03913f

Keywords

-

Funding

  1. NSF [DMR-0748943]
  2. American Recovery and Reinvestment Act

Ask authors/readers for more resources

Many binary late transition metal systems have large bulk miscibility gaps, and a variety of synthetic strategies have been developed to generate these non-equilibrium alloys as nanoparticles. While many of these methods strive to co-nucleate both elements by exploiting fast reduction kinetics or co-sequestration within a confined space, we show here that simple room-temperature borohydride co-reduction of appropriate aqueous metal salt solutions yields alloy nanoparticles in the bulk-immiscible Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh systems. The compositions can be tuned across the entire Au(1-x)Rh(x), Au(1-x)Pt(x), Pt(1-x)Rh(x), and Pd(1-x)Rh(x) solid solutions by varying the ratio of metal salt reagents, and they form in the presence of a variety of molecular and polymeric surface stabilizers. Reaction pathway studies on the model Au-Rh system suggest that the alloy nanoparticles form via a conversion chemistry'' mechanism: Au nanoparticle templates nucleate first, followed by diffusion of Rh to form homogeneous Au-Rh alloy nanoparticles. The alloy nanoparticles tend to be agglomerated, but this can be minimized by forming the nanoparticles directly on catalytically relevant high surface area carbon and biological supports, e.g. Vulcan carbon and wild-type M13 bacteriophage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available