4.3 Article

Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 27, Pages 10143-10152

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm04423g

Keywords

-

Ask authors/readers for more resources

Low temperature solvothermal synthesis routes are increasingly being pursued as energy-savvy ways, as opposed to conventional solid-state synthesis, to produce electrode materials. This current work reports ionothermal synthesis, using pristine ionic liquids (ILs) as reacting media, to produce LiMnPO4 (LMP) in the temperature range of 220-250 degrees C at ambient pressure. The role of various processing parameters and different types of ionic liquids on the structure and morphology of LiMnPO4 has been reported. Further, ionothermal synthesis can be modified by altering the nature of reacting media by addition of partially miscible solvent to ionic liquids. Here, in addition, we demonstrate three modified versions of ionothermal synthesis, namely (a) water-micelles (nano-reactors) entrapped in ILs, yielding nanoparticles, (b) carbon-assisted IL synthesis as a one-step production of carbon-coated LiMnPO4 and (c) diol-assisted ionothermal synthesis forming platelet-morphology. The resulting IL-synthesized LiMnPO4 olivines were found to deliver reversible capacity close to 100 mA h g(-1) (at a rate of C/20) with excellent cycling stability involving standard two-phase lithium (de) insertion mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available