4.3 Article

Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 18, Pages 6563-6568

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm10148j

Keywords

-

Funding

  1. National Natural Science Foundation of China [20874100, 20925415, 20990233]
  2. Fund for Creative Research Groups [50921062]
  3. Solar Energy Initiative of the Chinese Academy of Sciences [KGCX2-YW-399+9]

Ask authors/readers for more resources

Morphology of the active layer has been proven to play an important role in determining the final device performance of photovoltaic devices. Herein, we present a facile mixed solvents soaking approach to tailor the morphology of the active layer, in which not only the crystallinity of poly (3-hexylthiophene) (P3HT) in its composite film with [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) has been substantially improved, but also an interpenetrating network composed of highly crystalline P3HT and PCBM nanoaggregates is constructed as confirmed by transmission electron microscopy. Furthermore, X-ray photoelectron spectroscopy analysis reveals that P3HT chains enrich at the active layer/anode interface while more PCBM are found to present on the active layer/cathode interface along the vertical direction of the composite films, which is beneficial for charge carrier transport and will contribute to better device performance. The power conversion efficiency of the device using this method is improved to 3.23%, in contrast to 1.45% for a pristine device and 2.79% for a thermally annealed device. Therefore, this simple technique can simultaneously optimize lateral and vertical nanoscale phase separation of crystalline P3HT and PCBM, and shows high potential application in the preparation of high performance cost-effective polymer solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available