4.3 Article

Graphene and its derivative-based sensing materials for analytical devices

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 21, Issue 46, Pages 18503-18516

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm13228h

Keywords

-

Funding

  1. National Natural Science Foundation of China [20935003, 20820102037, 21075116]
  2. 973 Project [2010CB933603, 2011CB911002]

Ask authors/readers for more resources

Graphene, a new material for which the Noble prize was won, has received increasing attention due to its unique physicochemical properties, such as a high surface area, excellent conductivity, a high mechanical strength, and good biocompatibility. In particular, in the last two years there has been explosive growth in studies relating to the use of graphene and its derivatives as enhanced materials or carriers for probes and recognition elements in the development of high-performance analytical devices. In this feature article, we will highlight recent important progress in the construction of graphene and its derivative-based high-performance analytical sensors. First, recent research efforts on the design of new electrochemical sensors, including amperometry, electrochemical luminescence (ECL), field-effect transistor (FET), electrochemical impedance, photoelectrochemical and surface plasmon resonance (SPR) electrochemical sensors are described. Then, we will move on to discuss more modish optical sensors, such as fluorescent, colorimetric and surface enhanced Raman spectroscopy (SERS) sensors. Finally, we conclude with a look at the future challenges and prospects of graphene and its derivative-related analytical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available