4.3 Article

Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 20, Issue 22, Pages 4635-4641

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c000315h

Keywords

-

Funding

  1. National Science Foundation of China [20903018]
  2. State Key Joint Laboratory of Environment Simulation and Pollution Control [09K10ESPCT]

Ask authors/readers for more resources

A novel, all-in-one'', multifunctional microsphere with a fluorescent mesoporous silica shell (Rhodamine B coordinate receptor inside) and a magnetic core (Fe3O4) has been successfully fabricated using a sol-gel method and small molecular (CTAB) surfactants as structure-directing agents. At the same time, they were examined for environmental protection applications to detect, adsorb and remove Hg2+ in aqueous solution. The prepared nanocomposite microspheres were fluorescent, mesoporous, and magnetizable, with a diameter of 300-450 nm, a surface area of 600 m(2) g(-1), a pore size of 2.5 nm, and a saturation magnetization of 27.5 emu g(-1). These multifuctional microspheres showed excellent fluorescence sensitivity and selectivity towards Hg2+ over other metal ions (Na+, Mg2+, Mn2+, Co2+, Ni2+, Zn2+, Cd2+, Ag+, Pb2+ and Cu2+). Upon the addition of Hg2+, an overall emission change of 16-fold was observed, and the detection limit of Hg2+ was as low as 10 ppb. The adsorption process of Hg2+ on the microspheres was well described by the Langmuir equation. The equilibrium can be established within five minutes and the adsorption capacity was 21.05 mg g(-1). The concentration of Hg2+ ions can be reduced to less than 0.05 ppm and the used microspheres can be easily separated from the mixture by adding an external magnetic field. These results suggest that these all-in-one'' multifunctional nanocomposites are potentially useful materials for simultaneously rapidly detecting and recovering dangerous pollutants in aqueous solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available