4.3 Article

A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 20, Issue 26, Pages 5499-5503

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm00631a

Keywords

-

Funding

  1. ANR

Ask authors/readers for more resources

Temperature plays a fundamental role in all fields of science; hence the development of methods for measuring this property remains in vogue. Within this vast field, fluorescent thermometry appears as a simple, noninvasive and cost-effective method for providing good spatial, temporal and thermal resolution in both solid and liquid phases, even in distant or inaccessible environments. Here we describe the properties of a two-component fluorescent thermometry system comprised of Fe(II)-triazole type spin-crossover nanoparticles (temperature sensor) and an appropriate fluorophore (signal transducer). The primary advantage of this system is that the nanoparticles are modified easily, which enables fine control of the thermometric properties, while the optical properties (i.e. the signal detection) remain virtually unchanged. This system could thus be adapted in a straightforward manner to various problems where the use of fluorescent thermometry would be beneficial.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available