4.3 Article

Ambipolar all-polymer bulk heterojunction field-effect transistors

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 20, Issue 7, Pages 1317-1321

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b919596c

Keywords

-

Funding

  1. European Commission [MRTN-CT-2006-035884]

Ask authors/readers for more resources

We demonstrate solution processable all-polymer based field-effect transistors (FETs) exhibiting comparable electron and hole mobilities. The semiconducting layer is a bulk heterojunction of poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (n-type polymer) and regioregular poly(3-hexylthiophene) (p-type polymer). These polymers form a type-II heterojunction as revealed by the faster photoluminescence dynamics of the blend compared to the pristine materials. An electron mobiliy of 4 x 10(-3) cm(2)/V s and a hole mobility of 2 x 10(-3) cm(2)/V s were extracted from the transfer characteristics of bottom contact FETs. The balanced mobilities suggest that the active layer is a fine network of the two components, as confirmed by atomic force microscopy phase images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available