4.3 Article

Percolation network of organo-modified layered double hydroxide platelets into polystyrene showing enhanced rheological and dielectric behavior

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 20, Issue 42, Pages 9484-9494

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b926978a

Keywords

-

Funding

  1. Region Auvergne

Ask authors/readers for more resources

A hybrid organic inorganic layered double hydroxide incorporating 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) is characterized by means of XRD, FTIR, and XPS. The in situ polymerization is scrutinized by C-13 CPMAS as well as by a set of XRD experiments with varying temperature. It is found that the in situ polymerization is complete at 200 degrees C, and the hybrid framework sustains temperatures as high as 350 degrees C. Direct incorporation of poly(AMPS) is reported and the resulting hybrid LDH phases studied. Subsequently, all generated hybrid platelets are used as organo-modified 2D-type filler dispersed into polystyrene (PS). An immiscible PS composite structure with salient gel-like viscoelastic properties is obtained after bulk polymerization. In the low-frequency region, the typical Newtonian flow behaviour of PS is found to change progressively against filler loading into a shear-thinning behaviour evidenced by a pseudo-plateau in the elastic and loss modulus curves and associated with a shift of the glass transition temperature of PS to higher temperature. It is interpreted by hybrid LDH platelet domains presenting a large interface with the polymer, thus having the effect of restricting the plastic deformation by obstructing polymer chain motion. Such dispersed hybrid LDH tactoids forming a three-dimensional percolated network are indirectly evidenced by the enhancement of the dielectric properties illustrated by an increase in bulk dc conductivity of about one order at room temperature and in the dissipation factor. The study shows that hybrid LDH assembly is of relevance in topical applications regarding mechanical reinforcement as well as electrostatic energy dissipation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available