4.3 Article

Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 20, Issue 38, Pages 8285-8296

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm01238f

Keywords

-

Funding

  1. National Research Council of Canada (NRC)
  2. Spanish National Research Council (CSIC)
  3. Spanish Ministry of Science and Innovation (MICINN)

Ask authors/readers for more resources

A hydroxylated poly(ether ether ketone) (HPEEK) derivative has been covalently grafted onto the surface of acid-treated single-walled carbon nanotubes (SWCNTs) following two different esterification approaches. The hydroxylation degree of the HPEEK and the extent of the grafting reactions were determined by thermogravimetric analysis. Microscopic observations revealed an increase in the bundle diameter of the SWCNTs and the heterogeneous composition of the synthesized samples. Infrared, nuclear magnetic resonance and X-ray photoelectron spectra corroborated the grafting success, showing the appearance of signals associated with the ester group. The polymer-grafted SWCNTs display higher decomposition temperatures and a wider range of thermal degradation than the HPEEK. The esterification decreases the crystallization and melting temperature as well as the crystallinity of the HPEEK. The semicrystalline nature of the grafted samples was confirmed by X-ray diffraction analysis, which reveals a diminution in the crystal size of the polymer. Dynamic mechanical studies show an exceptional increase in the storage modulus and glass transition temperature of the polymer by the attachment to the SWCNTs. Slightly better thermal and mechanical properties are observed for the sample with the higher esterification degree. The HPEEK-grafted SWCNTs can be used as fillers to prepare PEEK nanocomposites with enhanced performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available