4.3 Article

Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 19, Issue 29, Pages 5220-5225

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b816349a

Keywords

-

Ask authors/readers for more resources

In this work, we demonstrate the systematic and delicate geometry control of Cu2O nanocrystals by taking advantage of the selective surface stabilization effect. A variety of Cu2O architectures, evolved from cubes through truncated cubes, cubooctahedrons, truncated octahedrons and finally to octahedrons, were achieved by simply adjusting the added PVP. Based on the understanding of the intrinsic structural features of the cuprite Cu2O and PVP, we elucidated the underlying shape evolution mechanism. The as-prepared products demonstrated a crystallography-dependent adsorption ability with methyl orange (MeO) as the pollutant. With the advantage of a low cost, high yield and straightforward procedure without pre-formed crystals as sacrificial templates, this method may provide a good starting point for the study of shape construction and morphology-dependent properties of other nanocrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available