4.3 Article

Tm3+ and/or Dy3+ doped LaOCl nanocrystalline phosphors for field emission displays

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 19, Issue 47, Pages 8936-8943

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b912115c

Keywords

-

Funding

  1. National Basic Research Program of China [2007CB935502, 2010CB327704]
  2. National Natural Science Foundation of China (NSFC) [50702057, 50872131, 60977013]

Ask authors/readers for more resources

Blue, yellow and white light emissive LaOCl:Tm3+, LaOCl:Dy3+ and LaOCl: Tm3+, Dy3+ nanocrystalline phosphors were synthesized through the Pechini-type sol-gel process. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and cathodoluminescence (CL) spectra were used to characterize the samples. Under UV radiation (229 nm) and low-voltage electron beam (0.5-5 kV) excitation, the Tm3+-doped LaOCl phosphor shows a very strong blue emission corresponding to the characteristic transitions of Tm3+ (D-1(2), (1)G(4) -> F-3(4), H-3(6)) with the strongest emission at 458 nm. The cathodoluminescent color of LaOCl:Tm3+ is blue to the naked eye with CIE coordinates of x = 0.1492, y = 0.0684. This phosphor has better CIE coordinates and higher emission intensity than the commercial product Y2SiO5:Ce3+. Notably, for the first time, white cathodoluminescence was realized by co-doping Tm3+ and Dy3+ with appropriate ratios in the LaOCl single host lattice, which can be potentially used as backlights. Luminescence mechanisms were proposed to explain the observed phenomena.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available