4.3 Article

High refractive index polymers: fundamental research and practical applications

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 19, Issue 47, Pages 8907-8919

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b909690f

Keywords

-

Funding

  1. National Natural Science Foundation of China [50873104]

Ask authors/readers for more resources

Rapid developments in advanced photonic devices have led to the increasing exploration of high refractive index (high-n) materials, particularly high-refractive-index polymers (HRIP). High refractive indices have been achieved either by introducing substituents with high molar refractions to make intrinsic HRIPs or by combining high-n nanoparticles with polymer matrixes to make HRIP nanocomposites. For intrinsic HRIPs, aromatic rings, sulfur-containing groups, halogens except fluorine and organometallic moieties are often utilized to increase their refractive indices. However, their upper n limitation is usually below 1.80. Incorporation of high-n nanoparticles into polymers seems to be a more promising strategy to achieve a refractive index higher than 1.80; however, the obtained organic-inorganic hybrid materials sometimes suffer from poor storage stability, higher optical loss and poor processability. Besides the refractive index, optical dispersion (Abbe number), birefringence and optical transparency are often involved in designing HRIPs for practical optical fabrications. Therefore, research of HRIPs is becoming an interdisciplinary subject. This feature article reviews recent developments in optical HRIPs and their typical applications in high-tech fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available