4.3 Article

Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 19, Issue 48, Pages 9176-9185

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b916672f

Keywords

-

Funding

  1. ARO (Army research office) [W911NF-05-1-0537]
  2. NSF [0754945/0754979]

Ask authors/readers for more resources

Graphite oxide (GO) was synthesized using two different methods: one with sulfuric acid as part of the oxidizing mixture (Hummers-Offeman method) and another one without the sulfur-containing compound involved in the oxidation process (Brodie method). They were both tested for ammonia adsorption in dynamic conditions, at ambient temperature, and characterized before and after exposure to ammonia by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, potentiometric titration, energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS) and elemental analysis. Analyses of the initial materials showed that besides epoxy, hydroxyl and carboxylic groups, a significant amount of sulfur is incorporated as sulfonic group for GO prepared by the Hummers-Offeman method. The process of ammonia adsorption seems to be strongly related to the type of GO. For GO prepared by the Brodie method, ammonia is mainly retained via intercalation in the interlayer space of GO and by reaction with the carboxylic groups present at the edges of the graphene layers. On the contrary, when GO prepared by the Hummers method is used, the ways of retention are different: not only is the intercalation of ammonia observed but its reaction with the epoxy, carboxylic and sulfonic groups present is also observed. In particular, during the ammonia adsorption process, sulfonic groups are converted to sulfates in the presence of superoxide anions O-2(-*). These sulfates can then react with ammonia to form ammonium sulfates. For both GOs, an incorporation of a significant part of the ammonia adsorbed as amines in their structure is observed as a result of reactive adsorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available