4.3 Article

Determining materials properties of natural composites using molecular simulation

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 19, Issue 39, Pages 7251-7262

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b909119j

Keywords

-

Funding

  1. National Science Foundation [MCA04N014]
  2. RealityGrid Platform [EP/C536452/1]

Ask authors/readers for more resources

Layered double hydroxides (LDHs) have a wide range of potential uses due to their ability to intercalate anionic species, including poly-anionic biopolymers. Atomistic simulations can provide considerable insight into these nano-structured materials, particularly given the recent advance in high-performance computing facilities and scalable simulation codes that has enabled simulations virtually free of finite size effects. In this work we present our findings of large-scale (> 100 000 atoms) molecular dynamics simulations of Mg-Al LDHs intercalated with alginate oligomers. We have investigated the effect of two different alginate oligomer chain lengths upon the materials properties of these LDH composites. In addition to this we have explored finite size effects through the use of three different system sizes for each alginate oligomer, the largest of which contains similar to 240 000 atoms. We estimate the average bending modulus of the systems to be 3 x 10(-19) J. However, we find the smallest alginate oligomer in our study dampens the undulations of the LDH sheets at long wavelengths, which confers a greater interlayer compressibility due to the small alginate molecules bridging the interlayer spacing. The initial orientation of larger alginate oligomers is found to have an impact on the Young's moduli of the composite materials over the timescales considered in this work. We find the average in-plane Young's modulus to be approximately 40 GPa for the total composite materials and 135 GPa for the LDH sheets alone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available