4.3 Article

Storage performance of LiFePO4 nanoplates

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 19, Issue 5, Pages 605-610

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b817242k

Keywords

-

Funding

  1. Ministry of Education, Singapore [R143-000-283-112, R265-000-274-133]
  2. NUS

Ask authors/readers for more resources

The morphology of electrode materials is addressed as a key factor controlling rapid lithium storage in anisotropic systems such as LiFePO4. In view of this, we have synthesized nanoplates of LiFePO4 with a uniform coating of a 5 nm thick amorphous carbon layer by the solvothermal method and investigated their electrochemical storage behavior. The obtained nanoplates are well characterized by XRPD, SEM, HRTEM and XPS techniques. The thickness along the b-axis is found to be 30-40 nm; such a morphology favors short diffusion lengths for Li+ ions, while the external conductive carbon coating provides connectivity for facile electron diffusion, resulting in high rate performances. Increase in the size of the nanoplates results in poor lithium storage performance. The storage performance of nanoplates is compared with that of mesoporous nanoparticles of LiFePO4 with non-uniform carbon coating. This paper thus describes the advantages of thinner nanoplates for high rate storage performances of battery electrode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available