4.3 Article

Photosynthesis within porous silica gel: viability and activity of encapsulated cyanobacteria

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 18, Issue 24, Pages 2833-2841

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b802705f

Keywords

-

Ask authors/readers for more resources

In the framework of designing novel bioreactors, the encapsulation of photosynthetic cyanobacterial strains of the genus Synechococcus, PCC 6301, PCC 7002 and Cyanothece PCC 7418, within mesoporous silica networks has been achieved via the acidification of aqueous colloidal silica precursors at ambient temperature. The effect of the silica matrix on the external membrane of the cells has been studied. The viability of the cells over a three month duration has been assessed using transmission electron microscopy, epifluorescence microscopy, UV-visible spectroscopy and high-performance liquid chromatography. The bioactivity of the encapsulated cyanobacteria was detected via the assimilation of NaH(14)CO(3). Although most cells entrapped within the silica gel remain undivided, some cells continued to divide even when there was limited space. TEM studies have revealed an interaction between the silica gel and the cell membrane. HPLC studies highlight that the photoactive pigments in PCC 6301 and PCC 7002 can be preserved for up to 12 weeks whilst PCC 7418 lost its photosynthetic pigments after two weeks post-immobilisation. These results suggest that certain strains of cyanobacteria are able to photosynthesise within a hybrid gel yielding the possibility of novel photobioreactors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available