4.3 Article

Europium confined cyclen dendrimers with photophysically active triazoles

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 18, Issue 22, Pages 2545-2554

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b802197j

Keywords

-

Ask authors/readers for more resources

Dendrimers up to the fourth generation (G1-G4) were successfully synthesized via the efficient copper catalyzed 1,3-dipolar cycloaddition between primary alkynes and azides (CuAAC), also referred to as a click reaction. The synthetic protocol involved the preparation of presynthesized dendron wedges that subsequently were attached to a tetra-valent alkyne functional cyclen core. These constructed structures integrated stable triazole groups intra-locked'' between the cyclen and dendron wedges. The incorporation of a lanthanide metal ion, europium, into the interior of all cyclen dendrimers was monitored by FT-IR. Interestingly, the photophysical results showed that the proximate triazole not only acts as a stable linker but also as a sensitizers, transferring its singlet-singlet excitation in the ultraviolet region (270-290 nm) to the partially filled luminescent lanthanide 4f shell. An increase of luminescence decay time from the lanthanide (5)D(0) -> (7)F(2) emission was observed with increasing dendrimer size, indicating that the shielding effect of the dendron wedges is important for the relaxation of the photo-excitation and energy transfer. To the best of our knowledge, this is the first time a set of dendron wedges have successfully been attached to a cyclen metal ion cage via the versatile click reaction. Furthermore, the produced triazoles intra-locked in close proximity to the macrocycle core elucidated an interesting photophysical function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available