4.3 Article

A simple model framework for the prediction of controlled release from bulk eroding polymer matrices

Journal

JOURNAL OF MATERIALS CHEMISTRY
Volume 18, Issue 16, Pages 1873-1880

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b718277e

Keywords

-

Ask authors/readers for more resources

A broadly applicable model for predicting controlled release could eliminate the need for exploratory, in vitro experiments during the design of new biodegradable matrix-based therapeutics. We have developed a simple mathematical model that can predict the release of many different types of agents from bulk eroding polymer matrices without regression. New methods for deterministically calculating the magnitude of the initial burst and the duration of the lag phase ( time before Fickian release) were developed to enable the model's broad applicability. To complete the model's development, such that predictions can be made from easily measured or commonly known parameters, two correlations were developed by fitting the fundamental equations to published controlled release data. To test the model, predictions were made for several different biodegradable matrix systems. In addition, varying the readily attainable parameters over rational bounds shows that the model predicts a wide range of therapeutically relevant release behaviors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available