4.4 Article

New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters

Journal

JOURNAL OF MASS SPECTROMETRY
Volume 49, Issue 7, Pages 628-638

Publisher

WILEY
DOI: 10.1002/jms.3384

Keywords

cuticular hydrocarbons; lipids; lithium attachment; MALDI matrix; waxes

Funding

  1. Czech Science Foundation (GACR) [203/09/0139]
  2. Academy of Sciences of the Czech Republic [RVO: 61388963]
  3. Charles University in Prague [SVV 260084]

Ask authors/readers for more resources

Lithium salts of organic aromatic acids (lithium benzoate, lithium salicylate, lithium vanillate, lithium 2,5-dimethoxybenzoate, lithium 2,5-dihydroxyterephthalate, lithium alpha-cyano-4-hydroxycinnamate and lithium sinapate) were synthesized and tested as potential matrices for the matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry analysis of hydrocarbons and wax esters. The analytes were desorbed using nitrogen laser (337.1 nm) and ionized via the attachment of a lithium cation, yielding [M+Li](+) adducts. The sample preparation and the experimental conditions were optimized for each matrix using stearyl behenate and n-triacontane standards. The performance of the new matrices in terms of signal intensity and reproducibility, the mass range occupied by matrix ions and the laser power threshold were studied and compared with a previously recommended lithium 2,5-dihydroxybenzoate matrix (LiDHB) (Cvacka and Svatos, Rapid Commun. Mass Spectrom. 2003, 17, 2203). Several of the new matrices performed better than LiDHB. Lithium vanillate offered a 2-3 times and 7-9 times higher signal for wax esters and hydrocarbons, respectively. Also, the signal reproducibility improved substantially, making this matrix a suitable candidate for imaging applications. In addition, the diffuse reflectance spectra and solubility of the synthesized compounds were investigated and discussed with respect to the compound's ability to serve as MALDI matrices. The applicability of selected matrices was tested on natural samples of wax esters and hydrocarbons. Copyright (C) 2014 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available