4.7 Article

An optimization model for reverse logistics network under stochastic environment by using genetic algorithm

Journal

JOURNAL OF MANUFACTURING SYSTEMS
Volume 33, Issue 3, Pages 348-356

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jmsy.2014.02.007

Keywords

Reverse logistics network; Genetic algorithm (GA); Priority-based encoding; Stochastic programming

Ask authors/readers for more resources

Recovery of used products has become increasingly important recently due to economic reasons and growing environmental or legislative concern. Product recovery, which comprises reuse, remanufacturing and materials recycling, requires an efficient reverse logistic network. One of the main characteristics of reverse logistics network problem is uncertainty that further amplifies the complexity of the problem. The degree of uncertainty in terms of the capacities, demands and quantity of products exists in reverse logistics parameters. With consideration of the factors noted above, this paper proposes a probabilistic mixed integer linear programming model for the design of a reverse logistics network. This probabilistic model is first converted into an equivalent deterministic model. In this paper we proposed multi-product, multi-stage reverse logistics network problem for the return products to determine not only the subsets of disassembly centers and processing centers to be opened, but also the transportation strategy that will satisfy demand imposed by manufacturing centers and recycling centers with minimum fixed opening cost and total shipping cost. Then, we propose priority based genetic algorithm to find reverse logistics network to satisfy the demand imposed by manufacturing centers and recycling centers with minimum total cost under uncertainty condition. Finally, we apply the proposed model to a numerical example. (C) 2014 Published by Elsevier Ltd on behalf of The Society of Manufacturing Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available