4.6 Article

Wing sexual dimorphism of pathogen-vector culicids

Journal

PARASITES & VECTORS
Volume 8, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13071-015-0769-6

Keywords

Culex; Aedes; Anopheles; Ochlerotatus; Culicidae; Mosquitoes; Geometric morphometrics

Funding

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2010/15039-1, 2006/02622-5]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [23038.005274/2011-24]

Ask authors/readers for more resources

Background: Sexual dimorphism in animals has been studied from different perspectives for decades. In 1874 Darwin hypothesized that it was related to sexual selection, and even after nearly 140 years, when additional empirical data has become available and the subject has been investigated from a contemporary viewpoint, this idea is still supported. Although mosquito (Culicidae) wings are of great importance as they play a sex-specific role, little is known about wing sexual dimorphism in these pathogen-vector insects. Detection and characterization of wing sexual dimorphism in culicids may indirectly enhance our knowledge of their epidemiology or reveal sex-linked genes, aspects that have been discussed by vector control initiatives and developers of genetically modified mosquitoes. Methods: Using geometric morphometrics, we carried out a comparative assessment of wing sexual dimorphism in ten culicid species of medical/veterinary importance from genera Culex, Aedes, Anopheles and Ochlerotatus collected in Brazil. Results: Discriminant analysis revealed significant sexual dimorphism in all the species studied, indicating that phenotypic expression of wing shape in mosquitoes is indeed sex-specific. A cross-validated test performed to reclassify the sexes with and without allometry yielded very similar results. Mahalanobis distances among the ten species showed that the species had different patterns of shape sexual dimorphism and that females are larger than males in some species. Conclusion: Wing morphology differed significantly between species. The finding of sexual dimorphism in all the species would suggest that the wing geometry of Culicidae is canalized. Although sexual dimorphism is prevalent, species-specific patterns occur. Allometry was not the main determinant of sexual dimorphism, which suggests that sexual selection or other evolutionary mechanisms underlie wing sexual dimorphism in these insects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available