4.5 Article

Determining factors for high performance silicone rubber microwave absorbing materials

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 323, Issue 12, Pages 1643-1651

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2011.01.028

Keywords

Rubber microwave absorbing material (RMAM); Silicone rubber; Ferrite; Carbonyl iron; Silane coupling agent

Funding

  1. Ministry of Education of China [IRT0807]

Ask authors/readers for more resources

Silicone rubber microwave absorbing materials (RMAMs) based on ferrite as the major absorbent were prepared by the mechanical blending method. The determining factors for the complex permittivity, complex permeability, and reflectivity of RMAM were thoroughly investigated with various samples including different crystal structures of Ba-ferrite (M-type, W-type, and Y-type), the ferrite with doped elements (Ba, Sr), the materials' thickness, the combination ratio of ferrite and carbonyl iron. The effects of surface modification and loading amount of ferrite on the mechanical properties, processing performance, and absorbing property of RMAM were also assessed. The results show that W-type Ba-ferrite based RMAM exhibits better absorbing property at high frequencies (8-18 GHz) than the other two barium ferrites (M-type and Y-type) based ones, and the absorbing property of RMAM based on Sr-ferrite is best. As the thickness of RMAM and the amount of absorbents increase, the absorption peak moves toward low frequency, the absorption frequency bandwidth is narrowed, and the reflectivity first decreases and later increases. The optimum thickness is 1.5-1.7 mm, and the amount of ferrite is 450 parts per hundreds of rubber (phr). Surface modification of the absorbent with silane coupling agent could improve the mechanical properties and processing performance of RMAM. It is concluded that there will be a synergistic effect when carbonyl iron (CI) is used in combination with Sr-ferrite (Sr-W) in an appropriate proportion. When the total volume fraction of absorbents is 51%, the optimum ratio of Cl to Sr-W is 17:34, the absorption frequency bandwidth (< -10 dB) is about 8 GHz, and the absorption area is -99 dB. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available