4.7 Article

Temporal Sampling Requirements for Reference Region Modeling of DCE-MRI Data in Human Breast Cancer

Journal

JOURNAL OF MAGNETIC RESONANCE IMAGING
Volume 30, Issue 1, Pages 121-134

Publisher

WILEY
DOI: 10.1002/jmri.21812

Keywords

DCE-MRI; breast cancer; temporal sampling; pharmacokinetics

Funding

  1. National Institutes of Health (NIH) [1P50CA98131, P30 CA68485, 1K25 EB005936, 1R01CA129961]
  2. Vanderbilt-Ingram Cancer Center Institutional [NIH P30 CA68485]
  3. NIBIB [1 K25 EB005936]
  4. NCI [1R01CA129961]

Ask authors/readers for more resources

Purpose: To assess the temporal sampling requirements needed for quantitative analysis of dynamic contrast-enhanced MRI (DCE-MRI) data with a reference region (RR) model in human breast cancer. Materials and Methods: Simulations were used to study errors in pharmacokinetic parameters (K-trans and upsilon(e)) estimated by the RR model using six DCE-MRI acquisitions over a range of pharmacokinetic parameter values, arterial input functions, and temporal samplings. DCE-MRI data were acquired on 12 breast cancer patients and parameters were estimated using the native resolution data (16.4 seconds) and compared to downsampled 32.8-second and 65.6-second data. Results: Simulations show that, in the majority of parameter combinations, the RR model results in an error less than 20% in the extracted parameters with temporal sampling as poor as 35.6 seconds. The experimental results show a high correlation between K-trans and upsilon(e) estimates from data acquired at 16.4-second temporal resolution compared to the downsampled 32.8-second data: the slope of the regression line was 1.025 (95% confidence interval [CI]: 1.021, 1.029). Pearson's correlation r = 0.943 (95% CI: 0.940, 0.945) for K-trans and 1.023 (95% CI: 1.021. 1.025), r = 0.979 (95% CI: 0.978, 0.980) for upsilon(e). For the 64-second temporal resolution data the results were: 0.890 (95% CI: 0.894, 0.905), r = 0.8645, (95% CI: 0.858, 0.871) for K-trans, and 1.041 (95% Cl: 1.039, 1.043), r = 0.970 (95% Cl: 0.968, 0.971) for upsilon(e). Conclusion: RR analysis allows for a significant reduction in temporal sampling requirements and this lends itself to analyze DCE-MRI data acquired in practical situations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available