4.3 Article

Single or triple gradients?

Journal

JOURNAL OF MAGNETIC RESONANCE
Volume 193, Issue 1, Pages 110-118

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jmr.2008.04.029

Keywords

pulsed field gradients; diffusion; coherence selection; long-lived states; singlet states; triple gradients; cryoprobe

Ask authors/readers for more resources

Pulsed Field Gradients (PFGs) have become ubiquitous tools not only for Magnetic Resonance Imaging (MRI), but also for NMR experiments designed to study translational diffusion, for spatial encoding in ultra-fast spectroscopy, for the selection of desirable coherence transfer pathways, for the suppression of solvent signals, and for the elimination of zero-quantum coherences. Some of these experiments can only be carried out if three orthogonal gradients are available, while others can also be implemented using a single gradient, albeit at some expense of performance. This paper discusses some of the advantages of triple- with respect to single-gradient probes. By way of examples we discuss (i) the measurement of small diffusion coefficients making use of the long spin-lattice relaxation times of nuclei with low gyromagnetic ratios gamma such as nitrogen-15, and (ii) the elimination of zero-quantum coherences in Exchange or Nuclear Overhauser Spectroscopy (EXSY or NOESY) experiments, as well as in methods relying on long-lived (singlet) states to study very slow exchange or diffusion processes. (c) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available