4.1 Article

Mechanical and Thermal Performance of High-Density Polyethylene/Alumina Nanocomposites

Journal

JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS
Volume 52, Issue 6, Pages 812-825

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00222348.2012.733297

Keywords

alumina; HDPE; mechanical properties; nanocomposites; silane coupling agent; thermal stability

Ask authors/readers for more resources

High-density polyethylene (HDPE) nanocomposites reinforced with pristine and vinyltrimethoxysilane (VTMS)-treated alumina nanoparticles of 2, 4, and 6wt% were melt-compounded in a twin-screw extruder followed by injection molding. Their structure, thermal and mechanical behaviors were studied. Fourier transform infrared (FTIR) spectra showed that VTMS was successfully covalently grafted to the alumina nanoparticles. The X-ray diffraction (XRD) patterns indicated that the alumina nanoparticle additions broadened the characteristic peak width of HDPE, indicating that they reduced the crystallite size of HDPE. The heat deflection temperature and thermogravimetric analyses demonstrated that the dimensional and thermal stability of HDPE were enhanced markedly by adding pristine and silane-treated alumina nanoparticles. The alumina nanoparticle additions were also beneficial in enhancing Young's modulus and yield strength of HDPE. The reinforcing effect was particularly apparent in the silane-treated nanocomposites due to improved fillermatrix interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available