4.3 Article

A Copper-Based Reverse ATRP Process for the Living Radical Polymerization of 4-Vinylpyridine: Discussion on Optimum Reaction Conditions

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10601320903004749

Keywords

living polymerization; reverse atom transfer radical polymerization; 4-vinylpyridine

Funding

  1. Natural Science Foundation of Shandong Province [Q2006F05]
  2. Educational Bureau of Shandong Province [J08LC03]

Ask authors/readers for more resources

In this original experiment, reverse atom transfer radical polymerization technique using CuCl2/hexamethyl tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as catalyst complex was applied to living radical polymerization of 4-vinylpyridine (4VP) with azobisisobutyronitrile (AIBN) as initiator. N,N-Dimethylformamide was used as solvent to improve the solubility of the reaction system. The polymerization not only showed the best control of molecular weight and its distribution, but also provided a rather rapid reaction rate with the molar ratio of [4VP]:[AIBN]:[CuCl2]:[Me6-TREN] = 400:1:2:2. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 51.5 kJ center dot mol1. Use of Cl as the halogen in copper halide had many advantages over the use of Br. The resulting poly(4-vinylpyridine) was successfully used as the macroinitiator to proceed the block polymerization of styrene in the presence of CuCl/Me6-TREN catalyst complex via a conventional ATRP process in DMF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available