4.5 Article Proceedings Paper

Behavior of buoyancy and momentum controlled hydrogen jets and flames emitted into the quiescent atmosphere

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jlp.2009.08.018

Keywords

Hydrogen; Jets; Dispersion; Buoyancy; Flammable distance

Ask authors/readers for more resources

As an effort to improve the prediction of hydrogen dispersion in the atmosphere, effects of buoyancy acting on the hydrogen jets formed by releasing from high pressure vessels are investigated analytically and experimentally. For the analytical study, an integral analysis for buoyant jets and flames is carried out to yield the closed formula describing the jet and flame shapes, including their trajectory and horizontal and vertical lengths corresponding to the critical concentrations. Because the density of hydrogen after releasing from high pressure storage conditions is much close to that of helium than that of hydrogen at room temperature, helium is used as the hydrogen surrogate for the buoyant jet experiments, which were performed by visualizing the jet dispersing in the atmosphere up to the jet Reynolds number Re similar to 2400. The trajectories obtained by the integral analysis and experiments agree relatively well until the transition to turbulence occurs. A further estimate for jets and flames is made by using the integral analysis as a preliminary design to the experiments involving a much greater hydrogen release. Once the comparative investigation of the larger scale experiments with the integral analysis, we anticipate that a more universal hydrogen jet and flame data can be obtained, which perhaps leads to a better safety distance of hydrogen stations. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available