4.1 Article

Thermodynamic and QSRR Modeling of HPLC Retention on Modern Stationary Phases

Journal

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10826076.2014.883532

Keywords

thermodynamics; reversed-phase HPLC; molecular descriptors; QSRR; liquid chromatography; retention modeling

Ask authors/readers for more resources

This paper investigates correlations between the standard chromatographic parameter, log k(w), obtained experimentally (classical thermodynamic) and obtained through the use of quantitative structure-retention relationships (QSRR) models (extrathermodynamic approach). QSRR models were created using descriptors from calculation chemistry, selected a priori on the basis of chemical intuition. Four modern analytical columns (packed with C18), often used in pharmaceutical analysis, were selected for the study. The simple extrathermodynamic model was demonstrated to be superior in terms of retention description with relation to rather complex models based on thermodynamic hermeneutics. However, all the QSRR equations derived are of limited predictive value as regards prediction of retention on the basis of the structure of the analyte. Nonetheless, they allow the differentiation of mechanism of separation operating on individual tested stationary phases. The descriptors, which are most significant in QSRR equations, appear to characterize better the net effect of interactions of the analytes with the stationary phases and the mobile phase containing acetonitrile as compared to the HPLC systems comprising methanol. These observations suggest that retention properties of new stationary phases studied in this work differ.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available